

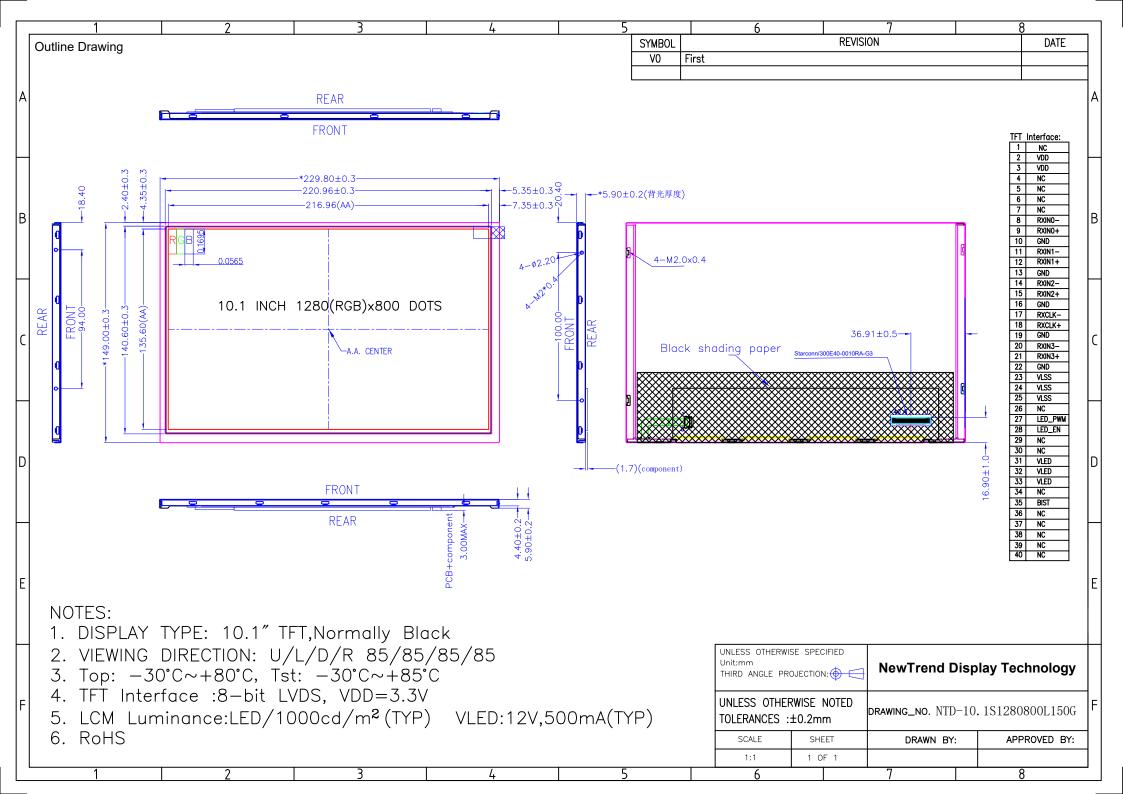
PRODUCT SPECIFICATIONS

Module No.: NTD-10.1S1280800L150G

TFT(Thin-Film-Transistor) Color Liquid Crystal Display Module

General Specification

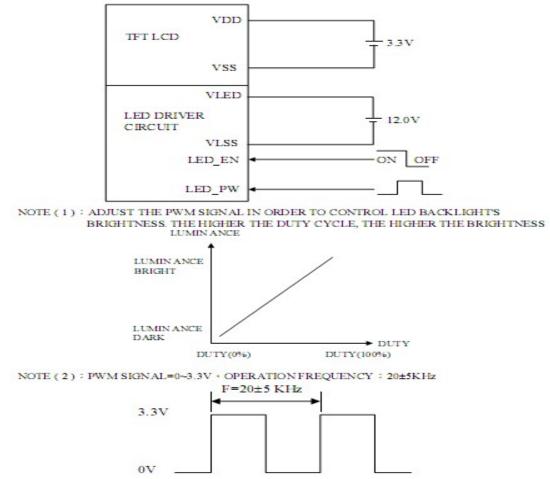
- 10.1 inch Diagonal
- 1280xRGBx800 resolution
- LVDS interface
- LED Blacklight (1000cd/m²)
 Built In-LED Driver
 PWM Brightness Control
- 16.7 M colors
- Wide Viewing Angles
- RoHS Compliant


For Customer's Acceptance:

Approved By	Comment

From: NewTrend Display Technology Co., Ltd.				

Document Revision History


Revision	Date	Description	Changed by
0		Initial Release	

Pin No.	Symbol	Function Description	
1	NC	No connection	
2	VDD	Supply voltage for LCD (+3.3V)	
3	VDD	Supply voltage for LCD (+3.3V)	
4	NC	No connection	
5	NC	No connection	
6	NC	No connection	
7	NC	No connection	
8	RXIN0-	-LVDS differential data input	
9	RXIN 0+	+LVDS differential data input	R0~R5, G0
10	GND	Ground	
11	RXIN 1-	-LVDS differential data input	
12	RXIN 1+	+LVDS differential data input t	G1~G5, B0,B1
13	GND	Ground	
14	RXIN 2-	-LVDS differential data input	
15	RXIN 2+	+LVDS differential data input	B2, B5, HS, VS, DE
16	GND	Ground	
17	RXCLK-	-LVDS differential data input	
18	RXCLK+	+LVDS differential data input	LVDS, CLK
19	GND	Ground	
20	RXIN 3-	-LVDS differential data input	
21	RXIN 3+	+LVDS differential data input	R6, R7,G6,G7,B6,B7
22	GND	Ground	
23	VLSS	Ground	
24	VLSS	Ground	
25	VLSS	Ground	
26	NC	No connection	
27	LED_PWM	Backlight PWM signal input	
28	LED_EN	Backlight enable H: Backlight on, L: Backlight off	
29	NC	No connection	
30	NC	No connection	
31	VLED	Supply Voltage for Backlight Driver (+12V TYP)	
32	VLED	Supply Voltage for Backlight Driver (+12V TYP)	
33	VLED	Supply Voltage for Backlight Driver (+12V TYP)	
34	NC	No connection	
35	BIST	No connection	
36	NC	No connection	
37	NC	No connection	
38	NC	No connection	
39	NC	No connection	
00		Í.	i

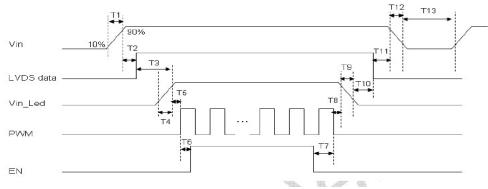
Pin Description:

POWER SUPPLY FOR LCM

DC Electrical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating Temperature Range	Тор	Absolute Max	-30	-	+80	°C
Storage Temperature Range	Ts⊤	Absolute Max	-30	-	+85	°C
Digital Supply Voltage	Vdd	-	2.75	3.3	3.6	V
Supply Current	ldd	VDD=3.3V		400	480	mA
Input logic high voltage	Vін	-	0.7*VDD	-	Vdd	V
Input logic low voltage	VIL	-	GND	-	0.3*VDD	V

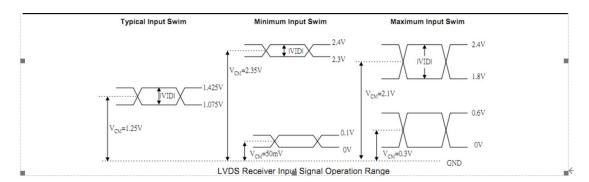
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Backlight Supply Voltage	Vled	Top=25°C	8.0	12.0	15.0	
Backlight Supply Current	ILED	VLED=12V	-	500	800	mA
Backlight Enable Voltage Range	LED_EN	-	0		3.3	V
Backlight PWM Voltage Range	LED_PWM	-	0		3.3	V
PWM Frequency Range	LED_PWM		100		20000	HZ
Backlight Lifetime	-	Top=25°C	50000			Hrs


*Backlight lifetime is rated as Hours until half-brightness, under normal operating conditions. The LED of the backlight is driven by current drain, drive voltage is for reference only. Drive voltage must be selected to ensure backlight current drain is below MAX level stated

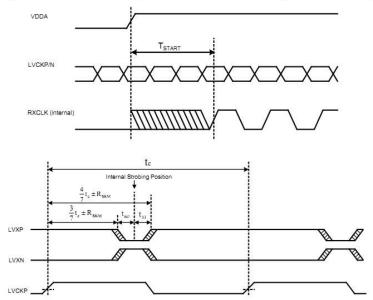
Item	ltem		Condition	Min.	Тур.	Max.	Unit
	Тор	-		-	85	-	
Operating	Bottom	-	CR≥10	-	85	-	Dea
Viewing Angles	Left	-		-	85	-	Deg
[Right	-		-	85	-	
Contrast Ratio		CR	Center	600	800	-	-
Luminance		Lv	PWM DUTY=100%	850	1000		cd/m ²
Despense Time	Rise	Tr	Tan-25°C		25	35	ms
Response Time	Fall	Tf	Top=25°C	-			ms
	Red -	Xr	-		0.610		I
		Yr			0.335		
	Green	Xg	-		0.340		-
Chromaticity	Green	Yg		TYP-	0.595	TYP+0.05	
Chromaticity	Blue	Хв	-	0.05	0.155		-
		Υв			0.205		
	White	Xw	-		0.340		-
	VVIILE	Yw	-		0.370		-

Optical Characteristics

Note (1) Measurement Setup: The LCD module should be stabilized at given temp. 25°C for 15 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 15 minutes in a windless room.

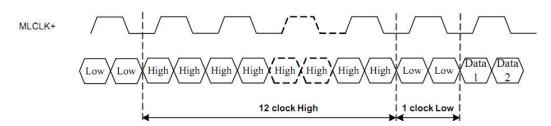

Timing Characteristics Power On and Reset Timing

Parameter	Symbol	Unit	Min	Typ.	Max
VIN Rise Time	T1	ms	0.5	1.2221	10
VIN Good to Signal Valid	T2	ms	30		90
Signal Valid to Backlight On	T3	ms	200		8 7 7
Backlight Power On Time	T4	ms	0.5		
Backlight VDD Good to System PWM On	T5	ms	10	12 1 <u>2</u> 2	<u>1.355</u>
System PWM ON to Backlight Enable ON	Т6	ms	10	17773	1777
Backlight Enable Off to System PWM Off	T7	ms	0		
System PWM Off to B/L Power Disable	Т8	ms	10	(1 11) (1	
Backlight Power Off Time	Т9	ms	0.5	10	30
Backlight Off to Signal Disable	T10	ms	200		2.27
Signal Disable to Power Down	T11	ms	0		50
VIN Fall Time	T12	ms	0.5	10	30
Power Off	T13	ms	500	12 (<u>222</u> 2)	<u>111</u>


LVDS Signal DC Characteristics

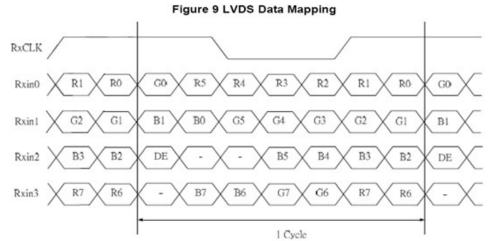
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Differential Input High Threshold	Vтн	Vсм =+1.2V	-	-	100	mV
Differential Input Low Threshold	Vtl	VCM -+1.2V	-100	-	-	mV

LVDS AC Characteristics


Symbol	Parameter	Conditions	Min.	Тур.	Max	Unit
-		RX_HF=0	25		100	MHz
FOP	Input Operating Frequency range	RX_HF=1	100	2	170	MHz
	Receiver Skew Margin	85MHz, VID =400mV, V _{CM} =1.2V	450	-		pS
R _{SKM}		150MHz, VID =400mV, V _{CM} =1.2V	267		570	pS
TSTRAT	Receiver startup time (after a valid LVDS clock is applied)		•	-	10	mS

NOTE: LVCK is advanced or delayed with respect to data until errors are observed at the receiver outputs. The advance or delay is then reduced until there are no data errors observed. The magnitude of the advance or delay is RSKM.

mini-LVDS Output Timing


mini-LVDS Reset Pules Timing

Interface Timings

Parameter	Symbol	Unit	Min.	Тур.	Max.
Frame Rate		Hz		60	2.53
Frame Period	tÝ	line	(815)	(823)	(1023)
Vertical Display Time	tVD	line		800	
Vertical Blanking Time	tvw+tvBP+tvFP	line	(15)	(23)	(33)
1 Line Scanning Time	tH	clock	(1410)	(1440)	(1470)
Horizontal Display Time	tHD	clock		1280	
Horizontal Blanking Time	tHW+tHBP+tHFP	clock	(60)	(160)	(190)
Clock Rate	1/TC	MHz	(68.9)	(71.1)	(73.4)

LVDS Data Mapping

Reliability Test Items and Criteria

No	Test Item	Test condition	Criterion
1	High Temperature Storage	$85^{\circ}C \pm 2^{\circ}C = 96H$ Restore 4H at $25^{\circ}C$, Power off	
2	Low Temperature Storage	-30℃±2℃ 96H Restore 4H at 25℃,Power off	1. After testing,
3	High Temperature Operation	80℃±2℃ 96H Restore 4H at 25℃,Power on	cosmetic and electrical defects
4	Low Temperature Operation	-30℃±2℃ 96H Restore 4H at 25℃,Power on	should not happen. 2. Total current consumption should not be more than
5	High Temperature/Humidity Storage	60℃±2℃ 90%RH 96H Power off	twice of initial value.
6	Temperature Cycle	$\begin{array}{ccc} -30^{\circ}\text{C} \rightarrow & +25^{\circ}\text{C} \rightarrow & 85^{\circ}\text{C} \rightarrow & +25^{\circ}\text{C} \\ (30\text{mins}) & (5\text{mins}) & (30\text{mins}) & (5\text{mins}) \\ & & 5 \text{ Cycle} \\ \\ \text{Restore 4H at } 25^{\circ}\text{C}, \text{ Power off} \end{array}$	

Precautions for Use of LCD Modules

1. Handling Precautions

1.1 The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.

1.2 If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.

1.3 Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.

1.4 The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.

1.5 If the display surface is contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:

— Isopropyl alcohol — Ethyl alcohol

Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following:

- Water - Ketone - Aromatic solvents

1.6 Do not attempt to disassemble the LCD Module.

1.7 If the logic circuit power is off, do not apply the input signals.

1.8 To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.

a. Be sure to ground the body when handling the LCD Modules.

b. Tools required for assembly, such as soldering irons, must be properly ground.

c. To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.

d. The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.

2. Storage precautions

2.1 When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.2.2 The LCD modules should be stored under the storage temperature range. If the LCD modules will be stored for a long time, the recommend condition is:

Temperature : 10° C ~ 40° C

Relatively humidity: ≤60%

2.3 The LCD modules should be stored in the room without acid, alkali and harmful gas.

3. The LCD modules should be no falling and violent shocking during transportation, and also should

avoid excessive press, water, damp and sunshine.